Skip to main content

Quantenboost für künstliche Intelligenz

News   •   Okt 14, 2016 09:00 CEST

Intelligente Maschinen, die selbständig lernen, gelten als Zukunftstrend. Forscher der Universität Innsbruck und des Joint Quantum Institute in Maryland, USA, loten nun in der Fachzeitschrift Physical Review Letters aus, wie Quantentechnologien dabei helfen können, die Methoden des maschinellen Lernens weiter zu verbessern.

In selbstfahrenden Autos, IBM's Watson oder Google's AlphaGo sind Computerprogramme am Werk, die aus Erfahrungen lernen können. Solche Maschinen werden im Zuge der Digitalisierung in vielen Lebensbereichen Einzug halten. Bei der Erforschung von Methoden der künstlichen Intelligenz steht besonders der Ansatz des bestärkenden Lernens im Mittelpunkt. Dabei bewegen sich Agenten in einer Umgebung und reagieren auf Belohnungen und Bestrafungen. Sie erlernen selbständig eine Strategie, um die erhaltenen Belohnungen zu maximieren. Für Agenten und Umgebungen, die den Gesetzen der Quantenphysik gehorchen, wurde dieses Modell bisher kaum untersucht. In diese Lücke stoßen nun Vedran Dunjko und Hans Briegel vom Institut für Theoretische Physik der Universität Innsbruck sowie Jacob M. Taylor vom Joint Quantum Institute in Maryland, USA, vor. Sie legen in der Fachzeitschrift Physical Review Letters eine umfassende Analyse von Methoden des maschinellen Lernens unter Quantenbedingungen vor.

mehr Infos

Wenn Sie unsere NeuroNews nicht mehr erhalten möchten, klicken Sie bitte hier.

Kommentare (0)

Kommentar hinzufügen

Kommentar