Skip to content
Preliminary tests for the 3D Printing of lunar regolith simulant NU-LHT-2M on a carbon steel baseplate
Preliminary tests for the 3D Printing of lunar regolith simulant NU-LHT-2M on a carbon steel baseplate

Press release -

3D printing and moon dust: an astronaut's kit for future space exploration?

Can 3D Printers support extra-terrestrial colonisation in Space?

One of the major challenges related to space exploration is the development of production technologies capable of exploiting the few resources available in extra-terrestrial environment. Laser 3D printing of lunar dust may be the answer to such queries. Reduction of elevated supply chain costs and times connected to space exploration were amongst the main drivers which brought to the joint investigation on behalf of the Department of Mechanical Engineering and Department of Aerospace Science and Technology of the Politecnico di Milano to on the feasibility of 3D printing a lunar regolith simulant (NU-LHT-2M).

Additive manufacturing or 3D printing systems may allow the realisation of components when required, employing locally available resources and through a direct conversion from the digital CAD geometry to the final object. 3D printing can thus enable the manufacturing of lightweight structures, with improved performance (heat exchange, impact resistance, etc.) and greater reliability due to significant reductions in the number of components.

The research was coordinated by Professor Bianca Maria Colosimo, (Department of Mechanical Engineering), and was carried out with support of the Italian Space Agency (ASI) and European Space Agency (ESA). The project saw the collaboration of a team from the Department of Mechanical Engineering who worked on the development of the laser 3D printer led by Prof. Barbara Previtali with the support of Dr. Ali Gökhan Demir, Leonardo Caprio and Eligio Grossi (Department of Mechanical Engineering), who developed the prototype 3D laser beam printer. Concurrently, a team from the Department of Aerospace Science and Technology composed by Prof. Michéle Lavagna, Prof. Giuseppe Sala and Lorenzo Abbondanti-Sitta contributed by providing the lunar dust simulant, cooperating during the various experimental campaigns and conducted materials characterization of the final products.

First author of the study “Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion”, published in the peer-reviewed journal Additive Manufacturing, is Leonardo Caprio, PhD candidate in Advanced and Smart Manufacturing at the Politecnico di Milano.

He stated that “a stable system architecture based on the use of an efficient laser source is fundamental in order to enable the technological transfer from a prototypal system to space applications”. The research demonstrated that lunar powder or regolith could be 3D printed through the optimisation of processing conditions and laser parameters. Following the research’s positive results, it was possible to define guidelines for the design of a future 3D printing system for use in space.

The ASI-Politecnico Agreement Project Manager Danilo Rubini said: "The Italian Space Agency, which has training and research support as its cornerstone, sees partnerships with universities of national excellence as one of its priorities.” The partnership with the Politecnico di Milano is a perfect example of cooperation between institutions and universities which starting from basic research to generate technologies and applications which contribute to socio-economic growth. If we consider the impact that space activities and satellite data can have on our daily lives we can see how Space is an always growing enabling element. Technological developments such as 3D printers and Additive Manufacturing when applied to space elements, such as the lunar regolith, can contribute to new lunar missions through In-Situ-Resource-Utilisation (ISRU) but may also help us to understand how to improve the management of terrestrial resources."

Leonardo Caprio

Graduated with a Master of Science in Mechanical Engineering with a specialisation in Advanced Materials and Technologies from the Politecnico di Milano in April 2017. Since then, he has been actively involved in the additive manufacturing laboratory (Add.Me Lab) of the University's Department of Mechanical Engineering as a PhD student. His research is focused on the development of innovative solutions for laser-based 3D printing processes. Whenever the opportunity arises, he travels abroad at international conferences to confront himself with the scientific community. He has a passion for challenges and adventures and is always eager to learn about new cultures (Team Genghis's Panda, Mongol Rally 2016).

The study: https://doi.org/10.1016/j.addma.2019.101029

Topics

Categories


Politecnico di Milano is a scientific-technological university which trains engineers, architects and industrial designers.

The University has always focused on the quality and innovation of its teaching and research, developing a fruitful relationship with business and productive world by means of experimental research and technological transfer.

Research has always been linked to didactics and it is a priority commitment which has allowed Politecnico Milano to achieve high quality results at an international level as to join the university to the business world. Research constitutes a parallel path to that formed by cooperation and alliances with the industrial system.

Knowing the world in which you are going to work is a vital requirement for training students. By referring back to the needs of the industrial world and public administration, research is facilitated in following new paths and dealing with the need for constant and rapid innovation. The alliance with the industrial world, in many cases favored by Fondazione Politecnico and by consortiums to which Politecnico belong, allows the university to follow the vocation of the territories in which it operates and to be a stimulus for their development.

The challenge which is being met today projects this tradition which is strongly rooted in the territory beyond the borders of the country, in a relationship which is developing first of all at the European level with the objective of contributing to the creation of a single professional training market. Politecnico takes part in several research, sites and training projects collaborating with the most qualified European universities. Politecnico's contribution is increasingly being extended to other countries: from North America to Southeast Asia to Eastern Europe. Today the drive to internationalization sees Politecnico Milano taking part into the European and world network of leading technical universities and it offers several courses beside many which are entirely taught in English.

Contacts

Alessandro Mariani

Alessandro Mariani

Press contact Head of Media Relations

Politecnico di Milano is a scientific-technological university which trains engineers, architects and industrial designers.

The University has always focused on the quality and innovation of its teaching and research, developing a fruitful relationship with business and productive world by means of experimental research and technological transfer.

Research has always been linked to didactics and it is a priority commitment which has allowed Politecnico Milano to achieve high quality results at an international level as to join the university to the business world. Research constitutes a parallel path to that formed by cooperation and alliances with the industrial system.

Knowing the world in which you are going to work is a vital requirement for training students. By referring back to the needs of the industrial world and public administration, research is facilitated in following new paths and dealing with the need for constant and rapid innovation. The alliance with the industrial world, in many cases favored by Fondazione Politecnico and by consortiums to which Politecnico belong, allows the university to follow the vocation of the territories in which it operates and to be a stimulus for their development.

The challenge which is being met today projects this tradition which is strongly rooted in the territory beyond the borders of the country, in a relationship which is developing first of all at the European level with the objective of contributing to the creation of a single professional training market. Politecnico takes part in several research, sites and training projects collaborating with the most qualified European universities. Politecnico's contribution is increasingly being extended to other countries: from North America to Southeast Asia to Eastern Europe. Today the drive to internationalization sees Politecnico Milano taking part into the European and world network of leading technical universities and it offers several courses beside many which are entirely taught in English.

Politecnico di Milano
Politecnico di Milano, Piazza Leonardo da Vinci 32
20133 Milano
Italy