Pressmeddelande -

Nanolegering tio gånger så effektiv som ren platina i bränsleceller

En ny typ av nanokatalysatorer kan ge bränslecellsbilen ett efterlängtat genombrott. Forskningsresultat från Chalmers och Danmarks Tekniske Universitet visar att det går att spara rejält på den dyrbara och sällsynta metallen platina genom att skapa en nanolegering med en ny tillverkningsmetod. Tekniken är dessutom väl lämpad för massproduktion. 

Trots att det har funnits bränslecellsbilar i cirka femtio år har utvecklingen inte lett till något kommersiellt genombrott. Katalysatorerna i dagens bränsleceller kräver nämligen stora mängder av platina, som är en av världens dyraste metaller.

– Det behövs en lösning på nanonivå för att kunna massproducera resurssmarta katalysatorer till bränsleceller. Med vår metod går det bara åt en tiondel så mycket platina för den mest krävande reaktionen. Totalt sett kan det minska platinamängden i en bränslecell med cirka 70 procent, säger Björn Wickman, forskare på institutionen för fysik på Chalmers. 

Om det är möjligt att nå den effektiviteten i en bränslecell är platinamängden i nivå med vad som används i en vanlig bils avgaskatalysator.

– Förhoppningsvis öppnar det för att bränsleceller ska kunna ersätta fossila bränslen och även vara ett komplement till batteridrivna bilar, säger Björn Wickman. 

Tidigare forskning har visat att det går att blanda platina med andra metaller, till exempel yttrium, för att få ner mängden platina i en bränslecell. Trots det har ingen hittills lyckats skapa legeringar mellan dessa metaller i nanopartikelform på ett sätt som kan användas för storskalig produktion. Det stora problemet är att yttriumet oxiderar i stället för att bilda legering med platinan. 

Den nöten har nu Chalmersforskarna knäckt genom att sammanföra metallerna i en vakuumkammare med hjälp av en teknik som heter sputtring. Resultatet är en nanometertunn film av den nya legeringen som skapar förutsättningar för masstillverkade bränslecellskatalysatorer av platina och yttrium.

För att kunna använda det nya materialet behöver dagens bränsleceller ändras något, men det är stora möjligheter som öppnar sig.

– När vi kan använda våra resurser bättre spar vi både på miljön och våra kostnader. Bränsleceller omvandlar kemisk energi till elektrisk energi med hjälp av vätgas och syrgas – med vatten som enda restprodukt. Bränsleceller har en stor potential för hållbara energilösningar när det gäller såväl transporter som bärbar elektronik och energi, säger Niklas Lindahl, forskare på institutionen för fysik på Chalmers. 

Läs den vetenskapliga artikeln  i Advanced Materials Interfaces: ”High Specific and Mass Activity for the Oxygen Reduction Reaction for Thin Film Catalysts of Sputtered Pt3Y

Artikeln är skriven av chalmersforskarna Niklas Lindahl, Ligang Feng, Henrik Grönbeck, Christoph Langhammer och Björn Wickman, samt av Eleonora Zamburlini, Maria Escudero-Escribano, Ifan E L Stephens och Ib Chorkendorff från Danmarks Tekniske Universitet.

Mer information:
Björn Wickman, forskare, institutionen för fysik, Chalmers, 031 772 51 79, bjorn.wickman@chalmers.se
Niklas Lindahl, forskare, institutionen för fysik, Chalmers, 031 772 33 33, niklas.lindahl@chalmers.se

Relaterade länkar

Ämnen

  • Motor

Kategorier

  • fysik
  • energi
  • naturresurser

Chalmers forskar och utbildar inom teknik, naturvetenskap, sjöfart och arkitektur, med en hållbar framtid som allomfattande vision. Chalmers är känt för sin effektiva innovationsmiljö och har åtta styrkeområden av internationell dignitet – Energi, Informations- och kommunikationsteknik, Livsvetenskaper och teknik, Materialvetenskap, Nanovetenskap och nanoteknik, Produktion, Samhällsbyggnad och Transport.
Graphene Flagship, ett av EU-kommissionens första forskningsinitiativ inom Future Emerging Technologies, koordineras av Chalmers i Göteborg. Chalmers har omkring 10 300 heltidsstudenter och 3 100 anställda.

Kontakter

Christian Borg

Presskontakt Presschef 031-772 33 95