Gå direkt till innehåll
I Daniel Kastinens doktorsavhandling presenteras resultat som banar väg för framtida forskning och tvärdisciplinära studier om meteorer samt om rymdskrot och jordnära asteroider. Foto: Martin Eriksson, Illustration: Daniel Kastinen
I Daniel Kastinens doktorsavhandling presenteras resultat som banar väg för framtida forskning och tvärdisciplinära studier om meteorer samt om rymdskrot och jordnära asteroider. Foto: Martin Eriksson, Illustration: Daniel Kastinen

Pressmeddelande -

Ny forskning avslöjar rymdskrot, osynliga meteorer och jordnära asteroider / New research reveals space debris, invisible meteors and near-Earth asteroids

I en ny avhandling från Institutet för rymdfysik och Umeå universitet presenteras unika metoder för analys av radardata och simuleringar av meteoroider i solsystemet. Metoderna har tillämpats för att bekräfta existensen av sällsynta meteorer på hög höjd samt för att mäta rymdskrot från satelliten Kosmos-1408. Den 25 november försvarar Daniel Kastinen doktorsavhandlingen.

Mitt primära mål har varit att noggrant analysera radarmätningar av meteorer och rymdskrot samt utvärdera mätningarnas precision. Detta för att förbättra fortsatt analys och använda resultaten tillsammans med de nya datorsimuleringarna. Arbetet banar väg för framtida forskning och tillåter tvärdisciplinära studier om meteorer, i folkmun kallade stjärnfall, samt om rymdskrot och jordnära asteroider”, säger Daniel Kastinen.

I jordens atmosfär infaller varje dag 10- 200 ton material från rymden bestående av stoft samt små och större gruspartiklar - meteoroider. Dessa partiklar kommer från moderkroppar som kometer och asteroider och härstammar på så sätt från tiden då solsystemet bildades. När en meteoroid träffar jordens atmosfär och brinner upp i form av en meteor sprids materialet i atmosfären. De flesta av dessa meteorer är osynliga för ögat men kan avslöjas med radar.

Genom analyser av data från ett radarsystem i Japan, den så kallade MU-radarn, har Daniel lyckats bekräfta existensen av sällsynta meteorer som förekommer på ovanligt hög höjd. Ett unikt resultat då flertalet teorier och rapporter genom åren presenterats men utan att någon säkert kunnat validera höjden på meteorerna. Hur de infallande partiklarna ger upphov till meteorer på hög höjd där atmosfären är väldigt tunn är ett omdebatterat forskningsämne.

En annan del av avhandlingen lyfter fram simuleringar av en meteorskur som heter Oktober-Drakoniderna. Daniel lyckades beskriva ett oväntat kraftigt utbrott av stjärnfall 2011–2012 samt förutsåg ett utbrott 2018. En efterföljande studie lade fram rigorösa grunder för att utveckla denna typ av simuleringar för att ännu bättre kunna förutse sådana meteorskurar.

Daniel har även använt sig av den vetenskapliga organisationen EISCAT:s radarsystem för mätningar av rymdskrot som bildades i november i fjol då den nedstängda satelliten Kosmos-1408 förstördes av en rysk missil vid ett så kallat anti-satellittest.

Genom nya analysmetoder kunde han uppskatta de resulterade fragmentens storlek och i avhandlingen presenteras en metod för att bestämma rymdobjekts omloppsbanor. Studien bidrar till bättre förståelse av vår jordnära rymdmiljö och kartläggning av den ökande mängden rymdskrot.

Asteroider är ytterligare ett aktuellt forskningsämne som Daniel har bidragit till i avhandlingen. Genom att simulera asteroiders rörelser och hur de reflekterar radiovågor bevisade Daniel att radarsystemet EISCAT 3D som just nu byggs i norra Skandinavien kommer att kunna användas för att studera jordnära asteroider.

Radarsystemet kan hjälpa till att spåra jordnära asteroider som kan kollidera med och skada jorden. Särskilt intressant är möjligheterna att upptäcka asteroider som är tillfälligt infångade av jordens gravitation, så kallade minimånar. Simuleringar visar att upp till tusen metersmå minimånar tillfälligt befinner sig i bana runt jorden varje år men hittills har endast ett par stycken upptäckts.

“Jag ser väldigt mycket fram emot att bygga vidare på min forskning. Det finns en mängd intressanta studier att göra med hjälp av de nya analysmetoderna. Exempelvis spåra var meteoroiderna kommer ifrån och leta efter meteoroider som har sitt ursprung i interstellära rymden utanför solsystemet samt upptäcka nya stoftströmmar i solsystemet. Jag ser även fram emot att använda simuleringsmetoderna för att bättre förutsäga meteorskurar och bidra till förståelsen av hur objekt i vårt solsystem rör sig och utvecklas”, säger Daniel.

Daniel Kastinen, född och uppvuxen på Åland, försvarar avhandlingen ”Från meteorer till rymdlägesbild: dynamiska modeller och radarmätningar av rymdobjektden 25 november klockan 09.00 i aulan vid IRF i Kiruna. Opponent är Dr. Detlef Koschny från European Space Research and Technology Centre (ESTEC), Noordwijk, Nederländerna.

Länk till avhandlingen


Kontakt:
Daniel Kastinen, doktorand, Institutet för rymdfysik (IRF) och Umeå universitet.
daniel.kastinen@irf.se, +46 980 791 72



*** ENG ***

In a new thesis from the Swedish Institute of Space Physics and Umeå University, unique methods for the analysis of radar data and simulations of meteoroids in the solar system are presented. The methods have been applied to confirm the existence of rare high-altitude meteors as well as to measure space debris from the Kosmos-1408 satellite. On November 25, Daniel Kastinen defends his doctoral thesis.

”My primary goal has been to carefully analyze radar measurements of meteors and space debris and evaluate the precision of the measurements. This is to improve further analysis and use the results together with the new dynamical simulations. The work paves the way for future research and allows cross-disciplinary studies on meteors as well as on space debris and near-Earth asteroids”, says Daniel Kastinen.

Every day, 10-200 tons of material from space, consisting of dust- sized particles and larger pieces of material - meteoroids, fall into the Earth's atmosphere. These particles come from parent bodies such as comets and asteroids and thus date back to the time when the solar system was formed. When a meteoroid hits the Earth's atmosphere and burns up in the form of a meteor, the material is dispersed in the atmosphere. Most of these meteors are invisible to the eye but can be detected by radar.

Through analyzes of data from the MU radar in Japan, Daniel has succeeded in confirming the existence of rare meteors that occur at unusually high altitudes. A unique result as several theories and reports have been presented over the years, but without confident validation of the meteors height. How the incident particles give rise to meteors at high altitudes, where the atmosphere is very tenuous, is a research topic currently being debated.

Another part of the thesis highlights simulations of the October Draconids meteor shower. Daniel managed to describe an unexpectedly strong outburst of the meteor showers in 2011–2012 and predicted an outburst in 2018. A subsequent study laid out rigorous grounds for developing this type of simulation to even better predict such meteor showers.

Daniel has also used the scientific organization EISCAT's radar system for measurements of space debris, which was created last November when the defunct satellite Kosmos-1408 was destroyed by a Russian missile during a so-called anti-satellite test.

Through new analysis methods, he was able to estimate the size of the resulting fragments. He also presents a method for determining the orbits of space objects. The study contributes to a better understanding of our near-Earth space environment and mapping of the increasing amount of space debris.

Asteroids are another current research topic that Daniel has contributed to. By simulating the movements of asteroids and how they reflect radio waves, Daniel proved that the EISCAT 3D radar system currently being built in northern Scandinavia will be able to study near-Earth asteroids. The radar system can track near-Earth asteroids that could collide with and damage Earth’s surface.

Particularly interesting are the possibilities of discovering asteroids that are temporarily captured by Earth's gravity, so-called minimoons. Simulations show that up to a thousand meter-sized minimoons are in temporary orbits around the Earth every year, but so far only a few have been discovered.

“I look forward to continue and build upon my research. There are a number of interesting studies to be done using the new analysis methods. For example, tracing where the meteoroids come from and looking for meteoroids that originate in interstellar space outside the solar system as well as discovering new dust streams in the solar system. I also want to use the methods to better predict meteor showers and contribute to the understanding of how objects in our solar system move and evolve”, says Daniel.

Daniel Kastinen, born and raised on Åland, defends the thesis "From Meteors to Space Safety: Dynamical Models and Radar Measurements of Space Objects" at 09.00 in the auditorium at IRF in Kiruna. Opponent is Dr. Detlef Koschny from the European Space Research and Technology Center (ESTEC), Noordwijk, The Netherlands.

Link to the thesis

Contact:
Daniel Kastinen, doctoral student, Swedish Institute of Space Physics (IRF) and Umeå University.
daniel.kastinen@irf.se, +46 980 791 72

Relaterade länkar

Ämnen

Kategorier


Institutet för rymdfysik, IRF, är ett statligt forskningsinstitut under Utbildningsdepartementet. IRF bedriver grundforskning och forskarutbildning i rymdfysik, atmosfärfysik och rymdteknik. Mätningar görs i atmosfären, jonosfären, magnetosfären och runt andra planeter med hjälp av ballonger, markbaserad utrustning (bl a radar) och satelliter. För närvarande har IRF instrument ombord på satelliter i bana runt två planeter: jorden och Mars. Dessutom ett instrument på baksidan av månen och instrument på väg till Merkurius och solen. IRF har ca 100 anställda och bedriver verksamhet i Kiruna (huvudkontoret), Umeå, Uppsala och Lund.

*       *          *          *          *          *          *          *          *          *          *          *

The Swedish Institute of Space Physics (IRF) is a governmental research institute which conducts research and postgraduate education in atmospheric physics, space physics and space technology. Measurements are made in the atmosphere, ionosphere, magnetosphere and around other planets with the help of ground-based equipment (including radar), stratospheric balloons and satellites. IRF was established (as Kiruna Geophysical Observatory) in 1957 and its first satellite instrument was launched in 1968. The head office is in Kiruna (geographic coordinates 67.84° N, 20.41° E) and IRF also has offices in Umeå, Uppsala and Lund.

Kontakter

Annelie Klint Nilsson

Annelie Klint Nilsson

Kommunikatör, Institutet för rymdfysik (IRF) +46 72 581 3327
Daniel Kastinen

Daniel Kastinen

Doktorand, Institutet för rymdfysik (IRF) och Umeå universitet / Doctoral student, Swedish Institute of Space Physics (IRF) and Umeå University +46 980 791 72

Swedish Institute of Space Physics

Institutet för rymdfysik, IRF, är ett statligt forskningsinstitut under Utbildningsdepartementet. IRF bedriver grundforskning och forskarutbildning i rymdfysik, atmosfärfysik och rymdteknik. Mätningar görs i atmosfären, jonosfären, magnetosfären och runt andra planeter med hjälp av ballonger, markbaserad utrustning (bl a radar) och satelliter.

Vi har en lång och framgångsrik historia (sedan 1968) av att leverera instrument och tjänster för rymdforskningsprojekt: https://www.irf.se/sv/irf-i-rymden/

För närvarande har IRF instrument ombord på satelliter i bana runt två planeter: jorden och Mars. Dessutom instrument på baksidan av månen samt i bana runt solen. Instrument är även på väg till Merkurius och Jupiter.

IRF har ca 100 anställda och bedriver verksamhet i Kiruna (huvudkontoret), Umeå, Uppsala och Lund.

Institutet för rymdfysik
Box 812
981 28 Kiruna
SWEDEN