Skip to content
Cheap forest waste can be used to make supercapacitors. Photo: Johnér bildbyrå AB
Cheap forest waste can be used to make supercapacitors. Photo: Johnér bildbyrå AB

Press release -

Carbon from forest waste can be used for future energy storage

Researchers found how to convert cost free forest waste, like pine cones, into carbon materials useful for energy storage. The method allows for easy and environmentally friendly dispersion of carbon in water, even when it is not water-soluble. The blend can then be sprayed onto a surface to produce electrodes for supercapacitors.

Supercapacitors are energy storage devices, similar to batteries, but storing energy in a different way. Supercapacitors can be charged and discharged much faster compared to batteries, cycled nearly unlimited number of times and operated over significantly longer lifespan compared to batteries. Supercapacitors are already used in some industries and are predicted to play an increasingly important role in the future as the need for energy storage is expected to grow.

High surface area electrodes, i.e. electrodes with a large surface area in relation to their volume, are the key element of supercapacitors. Andreas Nordenström, doctoral student at the Department of Physics at Umeå University, shows that high quality electrodes can be produced by spraying, or painting, water-based dispersions based on high surface area carbon materials. Different types of carbon materials can be used in the water-based dispersions designed by the researchers, including porous carbons produced from various forest waste.

“The water-based dispersion has several advantages over dispersions based on organic solvents, which are often toxic and bad for the environment. The solvents are particularly problematic in this context because the dispersions are sprayed on hot surfaces producing toxic vapor,” says Andreas Nordenström.

The procedure developed by researchers to produce porous carbons was earlier developed for “activated graphene”, a material prepared starting from reduced graphene oxide. However, the same chemical treatment applied to carbonized pine cones, spruce cones and pine bark was found to produce very similar carbon materials with extremely high surface area. These porous carbons are also nearly equally good for preparation of electrodes and energy storage applications.

“We demonstrated that rather expensive ‘activated graphene’ is just another kind of activated carbon and can be replaced by cheap, high-quality electrodes prepared from forest waste. The interest to recycle forest waste will likely increase in the future as the demand for energy storage devices such as supercapacitors is expected to increase,” says Andreas Nordenström.

The water-based dispersions can also play an important role for future research projects as the method can be used for different types of non-water soluble carbon materials.

“Porous carbons are very difficult to prepare in stable water-dispersions. Simply mixing carbon with water does not work as the carbon particles drop to the bottom in few minutes time. Using graphene oxide and fumed silica as added components, we solved the problem. We heard from industrial colleagues that dispersion prepared using our method was stable on their shelf for over one year.”

In his thesis, Andreas Nordenström has also studied graphite oxide, a carbon material that can be modified in many ways and for many potential applications. The research results increase the basic understanding of the material and show, among other things, how graphite oxide can be used in membranes which might be of interest for various filtration applications.

Andreas Nordenström is originally from Hammarstrand in Jämtland, Sweden. He has a Master of Science in Energy Engineering at Umeå University. For the last five years he has been a doctoral student in materials science in Alexandr Talyzin's group at the Department of Physics.

Umeå University is conducting intensive research on technological solutions for the transition to a greener world. Read more.

About the defense

On Friday, September 29, Andreas Nordenström, Department of Physics, will defend his thesis entitled Properties and applications of materials based on graphene oxide. The defense takes place at 13.00 in room NAT.D.480, Umeå University. Faculty opponent is Professor Andrey Turchanin, Fiedrich Shiller University Jena.

For more information, please contact:

Andreas Nordenström, doctoral student at the Department of Physics, Umeå University

Phone: +46 73 83 31 093

E-mail: andreas.nordenstrom@umu.se

Press photo

Topics


Umeå University
Umeå University is one of Sweden’s largest institutions of higher education with over 37,000 students and 4,300 faculty and staff. The university is home to a wide range of high-quality education programmes and world-class research in a number of fields. Umeå University was also where the revolutionary gene-editing tool CRISPR-Cas9 was discovered that has been awarded the Nobel Prize in Chemistry.

At Umeå University, distances are short. The university's unified campus encourages academic meetings, an exchange of ideas and interdisciplinary co-operation, and promotes a dynamic and open culture in which students and staff rejoice in the success of others.

Contacts

Sara-Lena Brännström

Sara-Lena Brännström

Communications officer Faculty of Science & Technology +46 90 786 72 24

Umeå University

Umeå University is one of Sweden's largest universities with over 37,000 students and 4,300 employees. The university is home to a wide range of education programmes and world-class research in a number of fields. Umeå University was also where the gene-editing tool CRISPR-Cas9 was discovered – a revolution in gene-technology that was awarded the 2020 Nobel Prize in Chemistry.

Founded in 1965, Umeå University is characterised by tradition and stability as well as innovation and change. Education and research on a high international level contributes to new knowledge of global importance, inspired, among other things, by the 2030 Agenda for Sustainable Development. The university houses creative and innovative people that take on societal challenges. Through long-term collaboration with organisations, trade and industry, and other universities, Umeå University continues to develop northern Sweden as a knowledge region.

The international atmosphere at the university and its unified campus encourages academic meetings, an exchange of ideas and interdisciplinary co-operation. The cohesive environment enables a strong sense of community and a dynamic and open culture in which students and staff rejoice in the success of others.

Campus Umeå and Umeå Arts Campus are only a stone's throw away from Umeå town centre and are situated next to one of Sweden's largest and most well-renowned university hospitals. The university also has campuses in the neighbouring towns Skellefteå and Örnsköldsvik.

At Umeå University, you will also find the highly-ranked Umeå Institute of Design, the environmentally certified Umeå School of Business, Economics and Statistics and the only architectural school with an artistic orientation – Umeå School of Architecture. The university also hosts a contemporary art museum Bildmuseet and Umeå's science centre – Curiosum. Umeå University is one of Sweden's five national sports universities and hosts an internationally recognised Arctic Research Centre.