Skip to content
An enzyme in the human cell nucleus has been shown to originate from one of the earliest forms of life on Earth. Image: Johnér bildbyrå AB
An enzyme in the human cell nucleus has been shown to originate from one of the earliest forms of life on Earth. Image: Johnér bildbyrå AB

Press release -

Traces of ancient organisms in human cells

A team of researchers at Umeå University has discovered that an enzyme in human cells has probably evolved from an ancient single-celled organism. The enzyme's unique properties mean that it could be used as a building block in the design of new enzymes, for example in processing wood raw materials. The discoveries are presented in the scientific journal Science Advances.

Life on Earth is divided into three groups of organisms: bacteria, archaea and eukaryotes, with humans belonging to the last group, the eukaryotes. One theory is that we evolved from archaea, which in turn may have evolved from bacteria.

Now, a team of researchers from the Department of Chemistry at Umeå University has discovered clear traces of an archaea (odinarchaeota) in an enzyme found in the nucleus of human cells. The human enzyme is called AK6 and has a variety of functions, such as energy metabolism, genome stabilization and programmed cell death.

“The discovery adds a small piece of the puzzle to understanding how human cells have evolved from more primitive predecessors. The timing is interesting given that the Nobel Prize in Physiology or Medicine went to the great discovery that we humans have a lot of Neanderthal DNA in our genetic material,” says Magnus Wolf-Watz, professor at the Department of Chemistry.

Unique feature

The primitive predecessor odinarchaeota has a unique and valuable feature in comparison with the human enzyme AK6. While AK6 can only recognize and use one specific molecule when catalyzing a chemical reaction, the enzyme from odinarchaeota can use a wide range of molecules.

"In the study, we discovered the molecular mechanism for this broad spectrum,” says Elisabet Sauer-Eriksson, professor at the Department of Chemistry, and continues:

"The trick is that the enzyme from odinarchaeota uses the amino acid glutamine, which has unique chemical properties that are used to their full potential in the enzyme. The general and broad recognition of different molecules takes place with a short loop sequence in the enzyme and this loop could be used as a Lego piece in the design of new enzymes.

Green chemistry

The area of enzyme design aims to develop enzymes that can be used, for example, in green chemistry. An example of this is the processing of wood raw materials, which is a strong research area at Umeå University.

The study has been led by Magnus Wolf-Watz, Elisabeth Sauer-Eriksson and Apoorv Verma who is now a postdoctoral fellow at the University of California Merced, USA.

The work has been of a multidisciplinary nature and has, in addition to researchers from the Department of Chemistry, also brought together researchers from the Department of Medical Biochemistry and a research group at the University of Texas at Arlington, USA, led by Dr. Kwangho Nam.

About the scientific article

Apoorv Verma, Emma Åberg-Zingmark, Tobias Sparrman, Ameeq Ul Mushtaq, Per Rogne, Christin Grundström, Ronnie Berntsson, Uwe H. Sauer, Lars Backman, Kwangho Nam, Elisabeth Sauer-Eriksson, Magnus Wolf-Watz, Insights into the evolution of enzymatic specificity and catalysis: From Asgard archaea to human adenylate kinases, Science Advances, DOI: 10.1126/sciadv.abm4089


For more information, please contact:

Magnus Wolf-Watz, Professor at the Department of Chemistry, Umeå university

Phone: +46 90 786 76 90

E-mail: magnus.wolf-watz@umu.se

Press photo

Elisabeth Sauer-Eriksson, Professor at the Department of Chemistry, Umeå university

Phone: + 46 90 786 59 23, +46 70 633 53 20

E-mail: elisabeth.sauer-eriksson@umu.se

Press photo

Topics

Categories


Umeå University
Umeå University is one of Sweden’s largest institutions of higher education with over 36,000 students and 4,000 faculty and staff. The university is home to a wide range of high-quality education programmes and world-class research in a number of fields. Umeå University was also where the revolutionary gene-editing tool CRISPR-Cas9 was discovered that has been awarded the Nobel Prize in Chemistry.

At Umeå University, distances are short. The university's unified campus encourages academic meetings, an exchange of ideas and interdisciplinary co-operation, and promotes a dynamic and open culture in which students and staff rejoice in the success of others.

Contacts

Sara-Lena Brännström

Sara-Lena Brännström

Communications officer Faculty of Science & Technology +46 90 786 72 24

Umeå University

Umeå University is one of Sweden's largest universities with over 37,000 students and 4,300 employees. The university is home to a wide range of education programmes and world-class research in a number of fields. Umeå University was also where the gene-editing tool CRISPR-Cas9 was discovered – a revolution in gene-technology that was awarded the 2020 Nobel Prize in Chemistry.

Founded in 1965, Umeå University is characterised by tradition and stability as well as innovation and change. Education and research on a high international level contributes to new knowledge of global importance, inspired, among other things, by the 2030 Agenda for Sustainable Development. The university houses creative and innovative people that take on societal challenges. Through long-term collaboration with organisations, trade and industry, and other universities, Umeå University continues to develop northern Sweden as a knowledge region.

The international atmosphere at the university and its unified campus encourages academic meetings, an exchange of ideas and interdisciplinary co-operation. The cohesive environment enables a strong sense of community and a dynamic and open culture in which students and staff rejoice in the success of others.

Campus Umeå and Umeå Arts Campus are only a stone's throw away from Umeå town centre and are situated next to one of Sweden's largest and most well-renowned university hospitals. The university also has campuses in the neighbouring towns Skellefteå and Örnsköldsvik.

At Umeå University, you will also find the highly-ranked Umeå Institute of Design, the environmentally certified Umeå School of Business, Economics and Statistics and the only architectural school with an artistic orientation – Umeå School of Architecture. The university also hosts a contemporary art museum Bildmuseet and Umeå's science centre – Curiosum. Umeå University is one of Sweden's five national sports universities and hosts an internationally recognised Arctic Research Centre.