Gå direkt till innehåll
Forskare tar steg mot att fånga en molekylär film av hur bildning av syre-syrebindning sker i naturen. Greg Stewart / SLAC National Accelerator Laboratory
Forskare tar steg mot att fånga en molekylär film av hur bildning av syre-syrebindning sker i naturen. Greg Stewart / SLAC National Accelerator Laboratory

Pressmeddelande -

Nya scener i ”filmen” om hur växter gör syre

Ett internationellt team för fotosyntesforskning där Umeåkemisten Casper de Lichtenberg ingår har spårat hur molekyler och elektroner rör sig när proteinkomplexet fotosystem II förbereder sig för att producera syre. Resultaten publiceras i den prestigefyllda vetenskapliga tidskriften PNAS.

Fotosystem II är ett proteinkomplex som i växter, alger och cyanobakterier katalyserar det första steget i fotosyntesen: ljusdriven vattenspjälkning. I efterföljande steg använder organismerna elektroner och protoner som produceras i denna process för att bygga högenergimolekyler som är viktiga för deras tillväxt. Som sidoprodukt produceras genom vattenspjälkningen det syre vi andas in. Detaljerad kunskap om hur denna mekanism fungerar är också mycket viktig för utvecklingen av solkraftsdrivna lösningar för hållbar bränsleproduktion.

Vattenspjälkning i fotosystem II sker vid ett metallcentrum som kallas det syreutvecklande komplexet. Detta komplex rör sig genom fyra stabila oxidationstillstånd kända som S0-, S1-, S2- och S3-tillstånd. Varje övergång drivs av ljus, som drar en elektron ur det syreutvecklande komplexet. Så småningom, i S3-tillståndet, är energin tillräckligt hög för att nästa ljusglimt får syreatomerna från två vattenmolekyler att gå ihop och producera molekylärt syre.

– Om vi tänker oss systemet som en råttfälla representerar S3-tillståndet, den sista stabila mellanprodukten innan syre frisläpps, det laddade ögonblick där fällan är redo att slå igen när en mus kommer in. När det gäller fotosystem II väntar vi på att en foton ska ta ut en elektron så att syre-syrebindningen kan bildas. Vår artikel beskriver övergången från S2- till S3-tillståndet, det vill säga att vi ser hur råttfällan är riggad, säger Casper de Lichtenberg, doktorand vid Umeå universitet och gästdoktorand vid Uppsala universitet.

Den internationella forskargruppen har använt en kombination av röntgendiffraktion och röntgenstrålningsspektroskopi för att ta ögonblicksbilder och visualisera de strukturella och elektroniska förändringar som sker i det katalytiska centrumet medan ”råttfällan” laddas.

– Med dessa experiment tar vi vetenskapen från en statisk bild till en dynamisk serie rörelser, ungefär som i en molekylär film. Här ser vi hur systemet reagerar bara 50 μs efter att fotonen har absorberats i S2-tillståndet och vi följer övergången hela vägen till S3-tillståndet vid kritiska tidpunkter, säger Johannes Messinger, professor vid Uppsala universitet och gästprofessor vid Umeå universitet.

Genom denna serie ögonblicksbilder kan man se hur en vattenmolekyl införlivas som en bro mellan en kalciumjon och en manganjon i det syreutvecklande komplexet. Det är möjligt att vattnet deltar i den efterföljande bildningen av syre-syrebindningar.

Men hur levereras vattnet till det syreutvecklande komplexet? Fotosystem II innehåller tre kanaler fyllda med vatten. Dessa leder till det syreutvecklande komplexet, men det är inte klart vilken som tillhandahåller vattnet för vattenspjälkningsreaktionen.

– I våra experiment kunde vi avslöja rörelserna i vattnet i endast en av dessa kanaler, vilket tyder på att den tillhandahåller den viktigaste vägen för vatten att ta sig in, säger Johannes Messinger.

Nästa steg i forskningen är att kartlägga övergången mellan S3 och S0 med tillräckligt mycket detaljer för att forskarna ska kunna se hur molekylärt syre bildas från två vattenmolekyler.

– Helst skulle vi så småningom vilja ha tillräckligt med data för att visa en film över hela reaktionscykeln, där viktiga händelser kan ses när fotoner absorberas och så småningom när syre släpps. Sådan detaljerad information skulle lära oss mycket om den här livsuppehållande processen och förhoppningsvis tjäna som en plan för hur man kan bygga effektiva vattenspjälkande katalysatorer från element som finns gott om på jorden i framtiden, säger Johannes Messinger.

Forskningssamarbetet inkluderar forskare från Humboldt-universitetet i Berlin och universitetet i Heidelberg i Tyskland; Lawrence Berkeley National Laboratory och SLAC National Accelerator Laboratory, University of California, Berkeley och San Francisco i USA; Diamond Light Source och Rutherford Appleton Laboratory i Storbritannien; och Japan Synchrotron Radiation Research Institute och RIKEN SPring-8 Center i Japan.

Originalartikel:

M. Ibrahim m.fl .: Untangling the Sequence of Events During the S2S3 Transition in Photosystem II and Implications for the Water Oxidation Mechanism. Proceedings of the National Academy of Sciences, maj 2020, doi: 10.1073 / pnas.2000529117

https://www.pnas.org/content/early/2020/05/19/2000529117

För mer information vänligen kontakta:

Johannes Messinger
Telefon: 070-167 98 43
E-post: Johannes.messinger@kemi.uu.se

Casper de Lichtenberg
Telefon: + 45-254 841 46
E-post: Casper.de.lichtenberg@umu.se

Pressfoto och illustration. Bild av Greg Stewart / SLAC National Accelerator Laboratory

Ämnen

Regioner


Umeå universitet
Umeå universitet är ett av Sveriges största lärosäten med drygt 33 000 studenter och 4 000 anställda. Här finns internationellt väletablerad forskning och en stor mångfald av utbildningar. Vårt campus utgör en inspirerande miljö som inbjuder till gränsöverskridande möten – mellan studenter, forskare, lärare och externa parter. Genom samverkan med andra samhällsaktörer bidrar vi till utveckling och stärker kvaliteten i forskning och utbildning.

Kontakter

Ingrid Söderbergh

Ingrid Söderbergh

Forskningssamordnare Forskning vid Umeå Centre for Microbial Research, UCMR 070-60 40 334

Umeå universitet

Med omkring 37 900 studenter och drygt 4 560 medarbetare är Umeå universitet ett av Sveriges största lärosäten. Här finns en mångfald av utbildningar och världsledande forskning inom flera vetenskapsområden. Umeå universitet är också platsen för den banbrytande upptäckten av gensaxen CRISPR-Cas9 – en revolution inom gentekniken som år 2020 tilldelades Nobelpriset i kemi.

Umeå universitet har funnits i drygt 50 år och präglas av såväl tradition och stabilitet som förändring och nytänkande. Här bedrivs utbildning och forskning på hög internationell nivå som bidrar till ny kunskap av global betydelse, där hållbarhetsmålen i Agenda 2030 utgör drivkraft och inspiration. Här finns kreativa och nytänkande miljöer som tar sig an samhällets utmaningar, och genom djupa och långsiktiga samarbeten med organisationer, näringsliv och andra lärosäten fortsätter Umeå universitet att utveckla norra Sverige som kunskapsregion.

Universitetets internationella atmosfär och våra sammanhållna campus gör det lätt att mötas, samarbeta och utbyta kunskap, något som främjar en dynamisk och öppen kultur där studenter och anställda gläds åt varandras framgångar.

Umeå campus och Konstnärligt campus ligger nära Umeås centrum och intill ett av Sveriges största och mest välrenommerade universitetssjukhus. Campus finns även i Skellefteå och Örnsköldsvik.

Vid Umeå universitet finns den högt rankade Designhögskolan, den miljöcertifierade Handelshögskolan och landets enda arkitekthögskola med konstnärlig inriktning. Här finns också Bildmuseet och Umeås science center, Curiosum. Umeå universitet är dessutom ett av Sveriges fem riksidrottsuniversitet och har ett internationellt ledande arktiskt centrum.