Gå direkt till innehåll

Pressmeddelande -

Ny forskning om metalliska nanopartiklar kan ge bättre solceller

I en ny studie visar en forskargrupp vid Uppsala universitet hur de lyckats väldigt väl med att samla upp så kallade ”heta elektronhål”. Forskningens resultat kan användas för att förbättra solceller, fotokemiska reaktioner och fotosensorer. Den vetenskapliga artikeln publiceras i Nature Materials.

Det är sedan tidigare känt att vissa metalliska nanopartiklar kan absorbera ljus och i processen frigöra positiva och negativa elektriska laddningar. När laddningar frigörs vid ljusabsorption kallas de ”heta” laddningar. De negativa laddningarna är elektroner, och de positiva laddningarna är ”elektronhål”, det vill säga en saknad elektron i valensbandet (elektronerna i atomens yttersta skal).

Heta elektroner är väl studerade och det är känt hur de kan samlas upp i halvledare (material som leder ström sämre än ledare, som till exempel koppar, men bättre än isolatorer så som porslin). Detta förlänger deras livstid så att de kan användas i fotokatalys, solceller och fotosensorer. Mycket mindre är känt när det gäller heta elektronhål.

I den nya studien har forskarna lyckats samla upp mer än 80 procent av de heta elektronhålen i en halvledare, vilket är tre gånger så mycket som man hade trott var möjligt. Processen är otroligt snabb, mindre än 200 femtosekunder (0.00 0000000002 s). Att man kan samla upp laddningarna i en halvledare innebär att de kan användas i solceller och i artificiell fotosyntes, till exempel för koldioxidreducering och för att producera väte och syre från vatten.

Forskarna hade förutspått teoretiskt att uppsamlingen av elektronhål även skulle påverka dynamiken för de negativa laddningarna, och den nya studien omfattar observationer som bekräftar detta. När ljus absorberas och elektriska laddningar genereras så ökar den så kallade elektrontemperaturen. När de heta elektronhålen samlas upp så ökar den elektroniska värmekapaciteten vilket påverkar till vilken grad elektrontemperaturen ökar. Detta tyder på att elektronernas energifördelning kan manipuleras genom att styra till vilken grad elektron-hålen samlas upp. Detta är ett betydelsefullt resultat, eftersom det gör att man kan exempelvis kan reglera den maximala spänningen i en direkt-plasmonisk solcell eller styra det reaktiva fönstret i en fotokatalytisk process.

Läs mer om plasmonik på forskargruppens webbsida.

Referens: Tagliabue et al (2020) Ultrafast Hot-Hole Injection Modifies Hot-Electron Dynamics in Au/p-GaN Heterostructures, Nature Materials. DOI: 10.1038/s41563-020-0737-1

För mer information kontakta: Jacinto Sá, institutionen för kemi – Ångström, Uppsala universitet, 018-471 6806, jacinto.sa@kemi.uu.se

Ämnen

Regioner


Uppsala universitet - kvalitet, kunskap och kreativitet sedan 1477. Forskning i världsklass och högklassig utbildning till global nytta för samhälle, näringsliv och kultur. Uppsala universitet är ett av norra Europas högst rankade lärosäten. www.uu.se

Kontakter

Annica Hulth

Forskningskommunikatör

Relaterat innehåll

Uppsala universitet - kvalitet, kunskap och kreativitet sedan 1477.

Uppsala universitet är Sveriges äldsta universitet, grundat 1477. Vi har över 50 000 studenter och 7 500 medarbetare i Uppsala och i Visby. Vi är ett brett forskningsuniversitet med forskning inom samhällsvetenskaper, humaniora, teknikvetenskap, naturvetenskap, medicin och farmakologi. Universitetet är återkommande rankat som ett av världens främsta universitet, med målet att bedriva utbildning och forskning av högsta kvalitet och relevans för att göra långsiktig skillnad i samhället.

Uppsala universitet
Segerstedthuset, Dag Hammarskjölds väg 7
752 36 Uppsala
Sweden
Besök våra andra nyhetsrum