Skip to content
A certain protein in listeria bacteria helps them survive in food production, putting them at risk of food poisoning. Photo: Johnér Bildbyrå AB
A certain protein in listeria bacteria helps them survive in food production, putting them at risk of food poisoning. Photo: Johnér Bildbyrå AB

Press release -

Research on calcium transport can fight bacteria and provide safer food

Researchers at Umeå University have revealed details on how bacteria use calcium to regulate vital processes, in a way that differs from human cells. This breakthrough is significant in the fight against antibiotic resistance and for increasing safety in food production.

Calcium ions are important messengers in the cells of plants, animals, and humans. They help regulate vital processes such as nerve impulses, stress responses, and heartbeats. In a study published in the scientific journal Science Advances, a research team at Umeå University has shown how a protein in Listeriabacteria transports calcium differently from eukaryotic cells (such as those in humans or plants).

The protein, called LMCA1, helps the bacterium—which can cause food poisoning—survive in harsh conditions, such as when it is exposed to the human immune system or the basic environments used to kill bacteria in commercial food production.

"The results are therefore particularly interesting for the development of new drugs against bacterial infections and for the food industry," says Magnus Andersson, Associate Professor at the Department of Chemistry, who leads the research team.

The team has developed a method using synchrotron X-rays to study the movements of proteins as they perform their functions. Thanks to this method, they can now track how the LMCA1 protein changes its structure to transport calcium and also measure how quickly this occurs. They have also succeeded in capturing LMCA1 at the critical moment when the protein binds calcium during transport through the cell membrane.

"It was amazing to be able to see this for the first time. By also identifying clear differences between calcium transport in eukaryotic and prokaryotic systems, our study has taken an important step toward the development of new antimicrobial strategies and ensuring safety in food production," says Magnus Andersson.

Much is known about how calcium is managed in complex organisms like humans. But it is only recently that researchers have begun to discover how bacteria, which are simple single-celled organisms, handle calcium. They lack organelles, such as mitochondria, which typically help regulate calcium levels. Despite this, bacteria can still respond to changes in calcium levels, particularly under stress conditions like exposure to toxins or during infections.

When calcium levels in humans are out of balance, it can lead to diseases—such as neurological, muscle-related, and cardiovascular diseases.

"It is particularly exciting that the work has also led to funding from the National Institute of Health in the USA, which will finance a new collaboration with the University of Michigan. We will now use the methods we have developed to produce molecules that can activate calcium transport proteins in cases of heart failure," says Magnus Andersson.

About the Scientific Article

Irfan Prabudiansyah, Fredrik Orädd, Konstantinos Magkakis, Kevin Pounot, Matteo Levantino, Magnus Andersson. Dephosphorylation and ion-binding in prokaryotic calcium transport. Science Advances, October 11, 2024. DOI: 10.1126/sciadv.adp2916

For more information, please contact:

Magnus Andersson, Associate Professor at the Department of Chemistry, Umeå University
Phone: +46 90 786 57 56
Email: magnus.p.andersson@umu.se

Topics


Umeå University
Umeå University is one of Sweden’s largest institutions of higher education with over 37,000 students and 4,300 faculty and staff. The university is home to a wide range of high-quality education programmes and world-class research in a number of fields. Umeå University was also where the revolutionary gene-editing tool CRISPR-Cas9 was discovered that has been awarded the Nobel Prize in Chemistry.

At Umeå University, distances are short. The university's unified campus encourages academic meetings, an exchange of ideas and interdisciplinary co-operation, and promotes a dynamic and open culture in which students and staff rejoice in the success of others.

Contacts

Sara-Lena Brännström

Sara-Lena Brännström

Communications officer Faculty of Science & Technology +46 90 786 72 24
Media Content Panel
Andersson_Magnus_0835_181101_MPN.jpg
Andersson_Magnus_0835_181101_MPN.jpg
License:
Media Use
File format:
.jpg
Size:
6720 x 4480, 10 MB
Download
Media Content Panel
LCMA1 figur.jpg
LCMA1 figur.jpg
License:
Media Use
File format:
.jpg
Size:
1920 x 1080, 997 KB
Download

Umeå University

Umeå University is a comprehensive university and one of Sweden’s largest higher education institutions with around 38,000 students and 4,600 staff. We have a diverse range of high-quality educational programmes and research within all disciplinary domains and the arts. Umeå University is also where the groundbreaking CRISPR-Cas9 gene-editing tool was discovered, starting a revolution in genetic engineering that led to the Nobel Prize in Chemistry.

The University has an international atmosphere and centres its work around core academic values. Our tightly knit campus makes it easy to meet, collaborate and share knowledge, something that encourages a dynamic and open culture where we celebrate each other’s successes. Umeå University prides itself in offering a world-class educational and research environment and expanding knowledge of global significance, where the sustainable development goals of Agenda 2030 inspire and motivate. We have creative and innovative research environments that offer the best potential for taking on the challenges facing society. Through long-term collaborations with organisations, industry and other higher education institutions, the University is helping northern Sweden become a knowledge region. The societal transformation and the massive investments currently occurring in northern Sweden create complex challenges but also opportunities. Umeå University is focused on conducting research about and within a society in transition and continuing to offer academic programmes for regions that need to expand quickly and sustainably.

Campus Umeå and the Umeå Arts Campus are close to the city centre and next to one of Sweden’s largest and most renown university hospitals. Education is also provided in several other towns, including Skellefteå, Örnsköldsvik, Lycksele and Kiruna. Umeå University is home to the highly ranked Umeå Institute of Design, the environmentally certified School of Business, Economics and Law, and the School of Architecture, the only one in Sweden with an artistic profile. Next door is Bildmuseet, which is Umeå’s contemporary art museum, and Curiosum, Umeå’s science centre. Umeå University is one of Sweden’s five national sports universities, has an internationally leading Arctic Research Centre, and has Várdduo, which is Sweden’s only research unit for Sámi research and indigenous research.